Changing Assessment Methods: New rules, new roles

ALFONSA GARCÍA(*) FRANCISCO GARCÍA(*) GERARDO RODRÍGUEZ AGUSTÍN DE LA VILLA alfonsa.garcia@eui.upm.es gmazario@eui.upm.es gerardo@usal.es avilla@upcomillas.es

(*) UPM Innovative Education GIEMATIC

20/07/2012

Summary

- 1. Mathematics and Computer Algebra Systems
- 2. Two Experiences
- 3. Conclusions

Mathematics and Computer Algebra Systems

➢ History

Here comes the futures: EHEA

New rules-New roles

20/07/2012

1.1 History: Twenty years Teaching Mathematics in a CAS environment

From 1992 to 2012

- Traditional model: CAS has been used as an effective tool in supporting teaching
- Restricted use of the CAS in exams

20/07/2012

1.2 Here comes the future: EHEA

- New attitude of teachers and students
- New learning scenarios
- Learning based on competencies
- New methodology
- New material
- New model of assessment
- Long-life learning
- E, b and u-learning

1.3 New rules- New roles

Mathematical competencies for long life learning

- Collaborative learning
- Integrated use of the CAS
- What is assessed strongly influences what is learned
- New assessment methods, with free use of the CAS

Competencies and learning outcomes

Meta competency: To solve engineering problems with mathematical methods

- Gather and organize relevant information
- Modelling
- Separate data from aims an choose an effective strategy
- > Use mathematical knowledge and adequate tools for solving the problem

Student's aims

The student controls his own learning and his strategy for problems solving

- Mathematics are important (everywhere and every time)
- Teachers define objectives. Students choose tools and strategies
- > Use of algorithms and the own toolbox

2. Two experiences

2.1 Linear Algebra

A first-semester course of Linear Algebra for Mechanical Engineers

6 ECTS=156 h student work

Moodle for teacher-student communication

A formative assessment model based on different learning activities

The Experience

Control Group	Experimental Group
47 students	49 students
Traditional teaching 4 lab sessions with DERIVE	CAS (Maxima) integrated in all learning activities

Choosing the CAS

For the Experimental Group (EG), we propose free and open source software, which offers:

- Freedom to use it anywhere and for any purpose
- Freedom to study and adapt it to our needs
- Freedom to distribute it to students, which working at home

Materials for the EG

- Textbook
- Learning guide
- Maxima files
- Tutorials
- Worksheets

Use of Maxima

- Tutorials and files with solved problems are provided to the students.
- Problems for solving through teamwork
- One hour per week for answering questions concerning Maxima, in a traditional classroom with laptops
- Students can freely use Maxima for doing exercises and problems

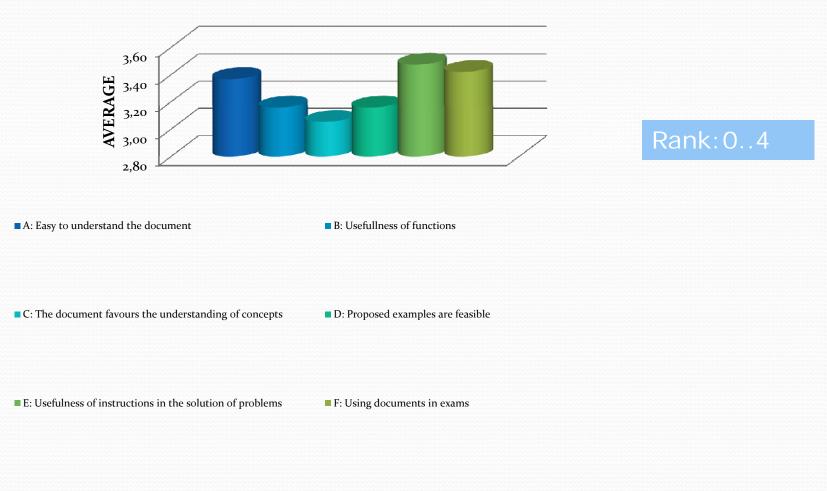
Assessment

Control Group	Experimental Group
80%: Three traditional written exams with "paper and pencil" (*)	80%: Three written exams with free use of Maxima (*)
10% DERIVE lab sessions	10% Team work with Maxima
10% Quizzes	10% Face to face problem solving with Maxima

(*) Last exam was the same for both groups

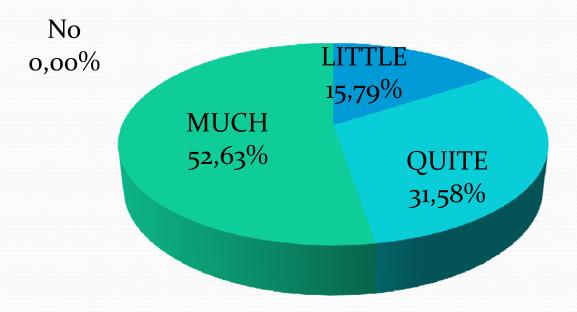
20/07/2012

Results


	Control	Experimental
Students	47	49
Does not complete the course	1	13
activities		
Successfully complete the	40	33
course		
Do not pass the course	6	3
Efficiency rate	85%	67.3%
Success rate	87%	91%

Students feeling (EG)

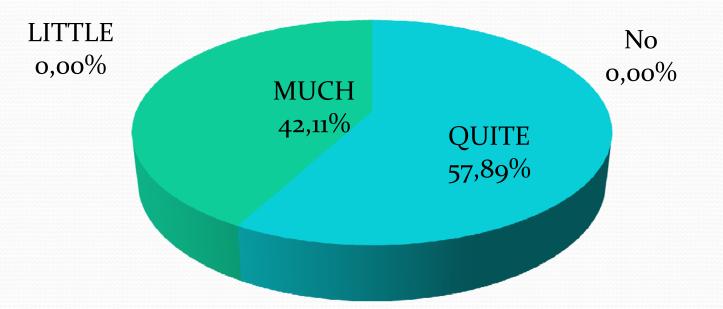
- A survey with students opinion about the provided documents: tutorials files and solved problems files
- >A survey with general questions
- Several items analyzed: Easiness, usefulness, adequate, etc.
- Perception concerning benefit-impact on competences


Survey: Tutorial of linear systems

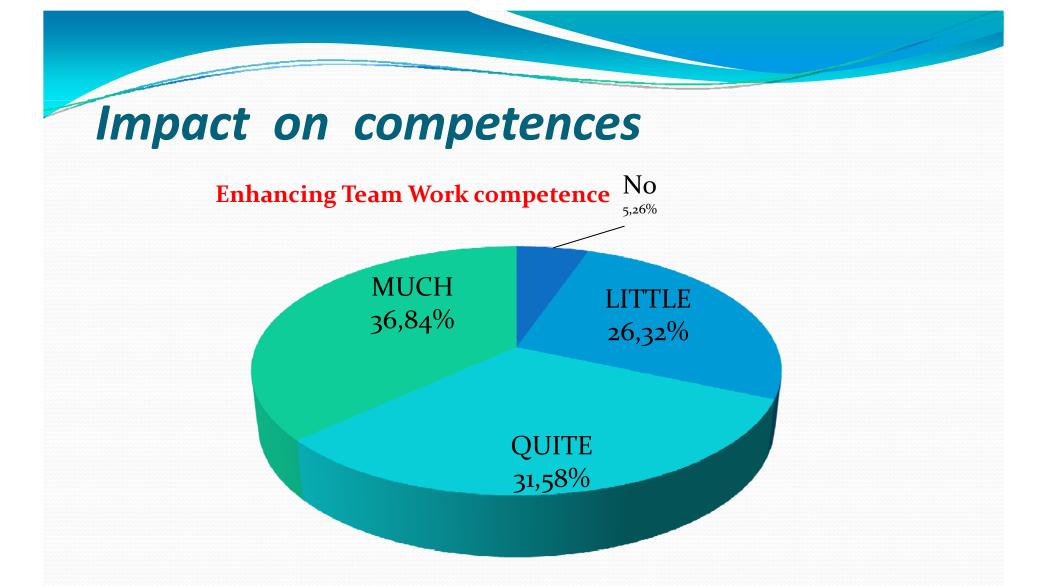
20/07/2012

Students opinion about Methodology

The use of Maxima in exams is appropriated?



20/07/2012


Impact on competences

Enhancing Self Learning competence

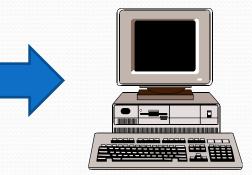
Technology and its Integration into Mathematics Education. TIME 2012

20/07/2012

20/07/2012

2.2 Methods for Signal Processing

- An optional subject for a continuing education course of Computer Engineering.
- Students are "workers who study"
- Mathematical Support for Signal Processing
- 3 ECTS = 78 h student work
- B-learning with Moodle: 30% face to face , 70% on line


Choosing the Mathematical Software

MATLAB

- The most widely used software for Signal Processing
- Students can define tools to be used in other subjects (Signal Processing, Systems Control, Robotic...)
- Industrial Applications

- Learning guide
- Presentations
- Documents
- > Forum
- On line Quizzes with feedback
- Matlab Worksheets
- Projects

Learning Activities		
Attending Lectures		9h
Displaying on line presenta	tions	6h
Individual study		12h
Tutorials		3h
On-line quizzes (two attemp	ots with feedback)	3h
Solving exercises with MATL	AB	10 h
Doing a Matlab toolbox		10h
Small Projects (team-work)		20h +2h
Exams		3h
Technology and its Integr 20/07/2012 TIME 2012	ration into Mathematics Education.	26

Assessment

- Exams (2), with free use of Matlab and the personal toolbox: 50%
- Team-Work Projects (2): 40%
- Online Quizzes: 10%

Results

- Students: Good marks and satisfaction with the assessment method
- GC: Team-work and self-learning competences has been developed
- SC: Teacher of Signal Processing appreciates the students' mathematical background

Conclusions (I)

- Students should be responsible for their own learning
- The use of Mathematical Software in the assessment activities is a crucial part in a learning framework based on competences, provides self-efficacy and promotes a way of working closer to the real work.

Conclusions (II)

Students viewpoint:

-Active learning helps to improve their competences

-Good feeling about material and learning strategy

THANK YOU

GRACIAS

TÄNAN

20/07/2012