

CAS: A Tool for Improving Autonomous Work

ALFONSA GARCÍA(*)
FRANCISCO GARCÍA(*)
ANGEL MARTIN
GERARDO RODRÍGUEZ
AGUSTÍN DE LA VILLA

11/10/2013

alfonsa.garcia@eui.upm.es gmazario@eui.upm.es delrey@usal.es gerardo@usal.es avilla@upcomillas.es

(*) GIEMATIC, Educational Innovation Group UPM

A new scenario (EHEA)

- Student-focused learning and teaching model
- Learning based on specific and generic competences
- Specific competences
- Generic competences: Self-learning
 Critical thinking
 Team work
 Problem solving
 Use of technology

Technology Environment

- CAS for Mathematics in Engineering
- E-learning for autonomous work

Experiences for improving autonomous work

- Small Projects with CAS
- Toolbox
- Competitions
- New assessments models

Small Projects in different environments

- Linear Algebra for Mechanical Engineering (Madrid)
- Calculus for Technical Architecture (Salamanca)
- Calculus for Computer Engineering (Madrid)

Common features

- Small Projects (with low percentage in the final grade)
- Team work
- First year students
- Different problems for different teams
- Use of CAS
- Goals:
 - Applying math concepts for problem-solving
 - Use of mathematical language-for describing procedures

Information to be provided to students

- Clear and concrete learning goals
- A problem for solving with some new mathematical methods or skills
- Clear instructions, including a driving question
- Adequate estimation of autonomous students' work
- Rubric for formative and summative assessment
- Complete planning, including feedback

The use of CAS in a small project allows...

- To solve "real" problems for implementing knowledge and skills
- To analyze different cases, changing the conditions, parameters, etc.
- To promote different ways for the solution
- To experiment and conjecture
- To share the autonomous work

But there are some risks

For solving the problem, students needs a good knowledge of :

MATH+ CAS

- The use of CAS only as a "black box"
- The possibility to miss the critical thinking
- The CAS themselves don't solve the problem
- The CAS learning can be seen as an additional task

Linear Algebra for Mechanical Engineering

- Specific Goals:
 - Applying Linear Algebra concepts for problemsolving.
- CAS (Maxima)
- Team work with intermediate feedback.

Calculus for Technical Architecture

- Specific Goals:
 - -Applying ODE concepts for problem-solving
- CAS (Mathematica)
- Team work with extra-tutorial activities.

Projects in Calculus for Computer Engineering

- Small team projects (10% of the final grade, 15 hours of autonomous work)
- Goals:
 - -Self learning Numerical Methods

 - Applying math concepts for problem-solvingUse of mathematical language for describing procedures
- CAS (Maxima)
- Team work → Technical report
- Individual validation test, with computer and tools
- 78 Projects. 180 students

Autonomous Team Work

- Modelling a real problem and formulating a mathematical problem
- Self-learning a numerical algorithm
- Programming the algorithm using Maxima
- Describe a procedure, for solving the mathematical problem, that embeds multiple ideas
- Testing the procedure and solving the real problem
- Writing a technical report

Procedure for solving the mathematical problem

- Rigor (consistent and without mathematical errors)
- Shareability (steps clear to the user)
- Re-usability (can be used in new but similar situations)
- Modifiability (easily modified for using in different situations)

Example

- Real problem: Estimate the number of individuals in a population with height between 1.70 m and 1.90 m, using a normal distribution model
- Mathematical problem: Approximate a definite integral with error less than a preset bound
- Self-learning: Simpson and/or Trapezoidal rule
- Programming with Maxima
- Procedure
- Testing the procedure and solving the problem

Assessment

Team work Validation test (individual)

- •Rubric and feedback for formative assessment of team work.
- •The grade for the Report is the same for all students of a team → TG

•Each student must be able to solve a similar problem, using the acquired knowledge, the procedure described and the Maxima functions programmed •An individual face to face test, using computer and tools →IG

Grade= $min\{10, TG \cdot (0.4 + IG/10)\}$

Conclusions

- Small projects could contribute towards raising motivation and a more effective learning.
- Application of mathematical concepts, for problem solving.
- Using the CAS the project is not limited to the collection and analysis of information. The CAS allows to solve real problems.

THANK YOU

